Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0282449, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883483

RESUMO

Climatic changes, such as heatwaves, pose unprecedented challenges for insects, as escalated temperatures above the thermal optimum alter insect reproductive strategies and energy metabolism. While thermal stress responses have been reported in different insect species, thermo-induced developmental abnormalities in phloem-feeding pests are largely unknown. In this laboratory study, we raised two groups of first instar nymphs belonging to two clones of the pea aphid Acyrthosiphon pisum, on fava beans Vicia faba. The instars developed and then asexually reproduced under constant exposure to a sub-lethal heatwave (27°C) for 14 days. Most mothers survived but their progenies showed abnormalities, as stillbirths and appendageless or weak nymphs with folded appendages were delivered. Clone N116 produced more deceased and appendageless embryos, contrary to N127, which produced fewer dead and more malformed premature embryos. Interestingly, the expression of the HSP70 and HSP83 genes differed in mothers between the clones. Moreover, noticeable changes in metabolism, e.g., lipids, were also detected and that differed in response to stress. Deformed offspring production after heat exposure may be due to heat injury and differential HSP gene expression, but may also be indicative of a conflict between maternal and offspring fitness. Reproductive altruism might have occurred to ensure some of the genetically identical daughters survive. This is because maintaining homeostasis and complete embryogenesis could not be simultaneously fulfilled due to the high costs of stress. Our findings shine new light on pea aphid responses to heatwaves and merit further examination across different lineages and species.


Assuntos
Afídeos , Animais , Afídeos/fisiologia , Ninfa , Pisum sativum/genética , Resposta ao Choque Térmico , Reprodução
2.
Appl Spectrosc ; 77(7): 764-773, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37278152

RESUMO

Ice cream is a complex product containing four different phases that affect its microstructure. Viscosity is a critical ice cream quality parameter that is typically measured using off-line methodologies, such as rheometry. In-line viscosity measurements allow continuous and instant analysis compared to off-line methodologies, yet they still constitute a challenge. This work focused on the preliminary study of the potential application of near-infrared (NIR) and Raman spectroscopy as analytical tools to assess the viscosity of ice cream mixes. Historically, partial least squares regression (PLSR) is a standard algorithm used for analysis of spectral data and in the development of predictive models. This methodology was implemented over a range of viscosity values, obtained by varying the ice cream fat content and homogenization conditions. Individual PLSR models showed some predictive ability and better performance compared to the integrated model obtained by data fusion. Lower prediction errors and higher coefficients of determination were obtained for NIR, making this technique more suitable based on model performance. However, other considerations should be accounted during the selection of the best method, such as implementation limitations. This study offers a preliminary comparison of the spectroscopic methods for quantitative analysis of viscosity of aged ice cream mixes and a starting point for an in-situ application study.

3.
Appl Spectrosc ; 74(7): 819-831, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32312088

RESUMO

In many industries, viscosity is an important quality parameter which significantly affects consumer satisfaction and process efficiency. In the personal care industry, this applies to products such as shampoo and shower gels whose complex structures are built up of micellar liquids. Measuring viscosity offline is well established using benchtop rheometers and viscometers. The difficulty lies in measuring this property directly in the process via on or inline technologies. Therefore, the aim of this work is to investigate whether proxy measurements using inline vibrational spectroscopy, e.g., near-infrared (NIR), mid-infrared (MIR), and Raman, can be used to predict the viscosity of micellar liquids. As optical techniques, they are nondestructive and easily implementable process analytical tools where each type of spectroscopy detects different molecular functionalities. Inline fiber optic coupled probes were employed; a transmission probe for NIR measurements, an attenuated total reflectance probe for MIR and a backscattering probe for Raman. Models were developed using forward interval partial least squares variable selection and log viscosity was used. For each technique, combinations of pre-processing techniques were trialed including detrending, Whittaker filters, standard normal variate, and multiple scatter correction. The results indicate that all three techniques could be applied individually to predict the viscosity of micellar liquids all showing comparable errors of prediction: NIR: 1.75 Pa s; MIR: 1.73 Pa s; and Raman: 1.57 Pa s. The Raman model showed the highest relative prediction deviation (RPD) value of 5.07, with the NIR and MIR models showing slightly lower values of 4.57 and 4.61, respectively. Data fusion was also explored to determine whether employing information from more than one data set improved the model quality. Trials involved weighting data sets based on their signal-to-noise ratio and weighting based on transmission curves (infrared data sets only). The signal-to-noise weighted NIR-MIR-Raman model showed the best performance compared with both combined and individual models with a root mean square error of cross-validation of 0.75 Pa s and an RPD of 10.62. This comparative study provides a good initial assessment of the three prospective process analytical technologies for the measurement of micellar liquid viscosity but also provides a good basis for general measurements of inline viscosity using commercially available process analytical technology. With these techniques typically being employed for compositional analysis, this work presents their capability in the measurement of viscosity-an important physical parameter, extending the applicability of these spectroscopic techniques.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...